翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

complex polytope : ウィキペディア英語版
complex polytope
In geometry, a complex polytope is a generalization of a polytope in real space to an analogous structure in a complex Hilbert space, where each real dimension is accompanied by an imaginary one.
On a real line, two points bound a segment. This defines an edge with two bounding vertices. For a real polytope it is not possible to have a third vertex associated with an edge because one of them would then lie between the other two. On the complex line, which may be represented as an Argand diagram, points are not ordered and there is no idea of "between", so more than two vertex points may be associated with a given edge.
Also, a real polygon has just two sides at each vertex, such that the boundary forms a closed loop. A real polyhedron has two faces at each edge such that the boundary forms a closed surface. A polychoron has two cells at each wall, and so on. These loops and surfaces have no analogy in complex spaces, for example a set of complex lines and points may form a closed chain of connections, but this chain does not bound a polygon. Thus, more than two elements meeting in one place may be allowed.
Since bounding does not occur, we cannot think of a complex edge as a line segment, but as the whole line. Similarly, we cannot think of a bounded polygonal face but must accept the whole plane.
Thus, a complex polytope may be understood as an arrangement of connected points, lines, planes and so on, where every point is the junction of multiple lines, every line of multiple planes, and so on. Likewise, each line must contain multiple points, each plane multiple lines, and so on.
==Regular complex polytopes==

The only complex polytopes to have been systematically studied are the regular ones. Shephard (1952) discovered them, and Coxeter (1974) developed the idea extensively. Shephard treated his figures as configurations from the start, while Coxeter only found it necessary to do so from Chapter 12 onwards.
Recall that a configuration consists of a collection of points, lines, and higher-dimensional objects, and an incidence relation connecting objects of different dimensions. A complex polytope must be realized in the appropriate power of \mathbb; so that the vertices of a complex polygon would be points of the "complex plane" \mathbb^2, and the edges would be one-complex-dimensional () subspaces of the "plane". Thus, an edge can be given a coordinate system consisting of a single complex number.
For a regular complex polytope, the vertices incident on the edge must be arranged symmetrically about a "center", which we will use as the origin of the edge's coordinate system; in the real case the center is simply the midpoint of the edge. The symmetry is a "reflection" about the center, which extends to a symmetry of the whole polytope; this "reflection" will leave the magnitude of any vertex unchanged, but change its argument by a fixed amount, moving it to the coordinates of the next vertex in order. So we may assume (after a suitable choice of scale) that the vertices on the edge satisfy the equation x^p - 1 = 0 where ''p'' is the number of incident vertices. Thus, in the Argand diagram of the edge, the vertex points lie at the vertices of a regular polygon centered on the origin.
Similarly
Two real projections of the same regular complex octagon with edges ''a,b,c,d,e,f,g,h'' are illustrated. It has 16 vertices, which for clarity have not been individually marked. Each edge has four vertices at which it meets another edge, hence each edge meets four other edges. In the first diagram, each edge is represented by a square. The sides of the square are ''not'' parts of the polygon - this is important to understand - but are drawn in purely to help visually relate the four vertices. The edges are laid out symmetrically (coincidentally the diagram looks the same as a common projection of the tesseract, but in the case of the complex octagon the diamond shapes which can be traced are not parts of the structure). The second diagram abandons octagonal symmetry in favour of clarity. Each edge is shown as a line, and each meeting point on the line is a vertex on that edge. The connectivity between the various edges is clear to see.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「complex polytope」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.